Preliminary Datasheet
Specifications in this document are tentative and subject to change.

RL78/G1A
RENESAS MCU

1. OUTLINE

1.1 Features

Ultra-Low Power Technology

- 1.6 V to 3.6 V operation from a single supply
- Stop (RAM retained): $0.23 \mu \mathrm{~A}$, (LVD enabled): 0.31 $\mu \mathrm{A}$
- Halt (RTC + LVD): $0.57 \mu \mathrm{~A}$
- Snooze: T.B.D.
- Operating: $66 \mu \mathrm{~A} / \mathrm{MHz}$

16-bit RL78 CPU Core

- Delivers 41 DMIPS at maximum operating frequency of 32 MHz
- Instruction Execution: 86\% of instructions can be executed in 1 to 2 clock cycles
- CISC Architecture (Harvard) with 3-stage pipeline
- Multiply Signed \& Unsigned: 16×16 to 32-bit result in 1 clock cycle
- MAC: 16×16 to 32 -bit result in 2 clock cycles
- 16-bit barrel shifter for shift \& rotate in 1 clock cycle
- 1-wire on-chip debug function

Code Flash Memory

- Density: 16 KB to 64 KB
- Block size: 1 KB
- On-chip single voltage flash memory with protection from block erase/writing
- Self-programming with secure boot swap function and flash shield window function

Data Flash Memory

- Data Flash with background operation
- Data flash size: 4 KB
- Erase Cycles: 1 Million (typ.)
- Erase/programming voltage: 1.8 V to 3.6 V

RAM

- 2 KB to 4 KB size options
- Supports operands or instructions
- Back-up retention in all modes

High-speed On-chip Oscillator

- 32 MHz with $+/-1 \%$ accuracy over voltage (1.8 V to 3.6 V) and temperature $\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
- Pre-configured settings: $32 \mathrm{MHz}, 24 \mathrm{MHz}, 16 \mathrm{MHz}$, $12 \mathrm{MHz}, 8 \mathrm{MHz}, 4 \mathrm{MHz} \& 1 \mathrm{MHz}$

Reset and Supply Management

- Power-on reset (POR) monitor/generator
- Low voltage detection (LVD) with 12 setting options (Interrupt and/or reset function)

Data Memory Access (DMA) Controller

- Up to 2 fully programmable channels
- Transfer unit: 8- or 16-bit

Multiple Communication Interfaces

- Up to $6 \times I^{2} C$ master
- Up to $1 \times \mathrm{I}^{2} \mathrm{C}$ multi-master
- Up to $6 \times$ CSI/SPI (7-, 8-bit)
- Up to $3 \times$ UART (7-, 8-, 9-bit)
- Up to $1 \times$ LIN

Extended-Function Timers

- Multi-function 16-bit timers: Up to 8 channels
- Real-time clock (RTC): 1 channel (full calendar and alarm function with watch correction function)
- Interval Timer: 12-bit, 1 channel
- 15 kHz watchdog timer: 1 channel (window function)

Rich Analog

- ADC: Up to 28 channels, 12-bit resolution, $3.375 \mu \mathrm{~s}$ conversion time
- Supports 1.6 V
- Internal voltage reference (1.45 V)
- On-chip temperature sensor

Safety Features (IEC or UL 60730 compliance)

- Flash memory CRC calculation
- RAM parity error check
- RAM write protection
- SFR write protection
- lllegal memory access detection
- Clock stop/ frequency detection
- ADC self-test

General Purpose I/O

-3.6 V tolerant, high-current (up to 20 mA per pin)

- Open-Drain, Internal Pull-up support

Operating Ambient Temperature

- Standard: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Package Type and Pin Count

From $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ to $10 \mathrm{~mm} \times 10 \mathrm{~mm}$
QFP: 48, 64
QFN: 32, 48
LGA: 25
BGA: 64

O ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/G1A			
		25 pins	32 pins	48 pins	64 pins	
64 KB	4 KB	4 KB Note	R5F10E8E	R5F10EBE	R5F10EGE	R5F10ELE
48 KB	4 KB	3 KB	R5F10E8D	R5F10EBD	R5F10EGD	R5F10ELD
32 KB	4 KB	2 KB	R5F10E8C	R5F10EBC	R5F10EGC	R5F10ELC
16 KB	4 KB	2 KB	R5F10E8A	R5F10EBA	R5F10EGA	-

Note This is about 3 KB when the self-programming function and data flash function are used.

1.2 Ordering Information

- Flash memory version (lead-free product)

Pin count	Package	Data flash	Part Number
25 pins	25-pin plastic FLGA (3×3)	Mounted	R5F10E8AALA, R5F10E8CALA, R5F10E8DALA, R5F10E8EALA
32 pins	32-pin plastic WQFN (fine pitch) (5×5)	Mounted	R5F10EBAANA, R5F10EBCANA, R5F10EBDANA, R5F10EBEANA
48 pins	48-pin plastic LQFP (fine pitch) (7×7)	Mounted	R5F10EGAAFB, R5F10EGCAFB, R5F10EGDAFB, R5F10EGEAFB
	48-pin plastic WQFN (7×7)	Mounted	R5F10EGAANA, R5F10EGCANA, R5F10EGDANA, R5F10EGEANA
64 pins	64-pin plastic LQFP (fine pitch) (10×10)	Mounted	R5F10ELCAFB, R5F10ELDAFB, R5F10ELEAFB
	64-pin plastic FBGA (4×4)	Mounted	R5F10ELCABG, R5F10ELDABG, R5F10ELEABG

1.3 Pin Configuration (Top View)

1.3.1 25 -pin products

- 25 -pin plastic FLGA (3×3)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remarks 1. For pin identification, see 1.4 Pin Identification.
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.3.2 32-pin products

- 32-pin plastic WQFN (fine pitch) (5×5)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remarks 1. For pin identification, see 1.4 Pin Identification.
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I / O redirection register (PIOR).
1.3.3 48-pin products

- 48 -pin plastic LQFP (fine pitch) (7×7)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remarks 1. For pin identification, see 1.4 Pin Identification.
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I / O redirection register (PIOR).

- 48-pin plastic WQFN (7×7)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remarks 1. For pin identification, see 1.4 Pin Identification.
2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
1.3.4 64-pin products

- 64-pin plastic LQFP (fine pitch) (10×10)

Cautions 1. Make EVsso pin the same potential as Vss pin.

2. Make Vdd pin the potential that is higher than EVddo pin.
3. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remarks 1. For pin identification, see 1.4 Pin Identification.
2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVddo pins and connect the Vss and EVssOpins to separate ground lines.
3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I / O redirection register (PIOR).

- 64-pin plastic FBGA (4×4)

Pin No.	Name						
A1	P05/TI05/TO05/KR8	C1	P51/ANI25/SO11 INTP2	E1	P153/ANI11/(KR8)	G1	AV

Cautions 1. Make EVsso pin the same potential as Vss pin.
2. Make Vdd pin the potential that is higher than EVddo pin.
3. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$).

Remarks 1. For pin identification, see $\mathbf{1 . 4}$ Pin Identification.
2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDDo pins and connect the Vss and EVsso pins to separate ground lines.
3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.4 Pin Identification

ANIO to ANI12,	
ANI16 to ANI30:	Analog input
AVDD:	Analog power supply
AVss:	Analog ground
AVREFM:	A/D converter reference
	potential (- side) input
AVREFP:	A/D converter reference
	potential (+ side) input
EVDD0:	Power supply for port
EVsso:	Ground for port
EXCLK:	External clock input (main
EXCLKS:	system clock)
External clock input (sub	
INTP0 to INTP11:	External interrupt input
KR0 to KR9:	Key return
P00 to P06:	Port 0
P10 to P16:	Port 1
P20 to P27:	Port 2
P30, P31:	Port 3
P40 to P43:	Port 4
P50, P51:	Port 5
P60 to P63:	Port 6
P70 to P77:	Port 7
P120 to P124:	Port 12
P130, P137:	Port 13
P140, P141:	Port 14
P150 to P154:	Port 15

PCLBUZ0, PCLBUZ1:	Programmable clock output/buzzer output
REGC:	Regulator capacitance
RESET:	Reset
RTC1HZ:	Real-time clock correction clock (1 Hz) output
RxD0 to RxD2:	Receive data
SCK00, SCK01, SCK10,	
SCK11, SCK20, SCK21:	Serial clock input/output
SCLA0, SCL00, SCL01,	
SCL10, SCL11, SCL20,	
SCL21:	Serial clock input/output
SDAA0, SDA00, SDA01,	
SDA10, SDA11, SDA20,	
SDA21:	Serial data input/output
SI00, SI01, SI10, SI11,	
SI20, SI21:	Serial data input
SO00, SO01, SO10,	
SO11, SO20, SO21:	Serial data output
TIOO, TIO1, TI03 to TI07:	Timer input
TO00, TO01,	
TO03 to TO07:	Timer output
TOOLO:	Data input/output for tool
TOOLRxD, TOOLTxD:	Data input/output for external device
TxD0 to TxD2:	Transmit data
VDD:	Power supply
Vss:	Ground
$\mathrm{X} 1, \mathrm{X} 2$:	Crystal oscillator (main system clock)
XT1, XT2:	Crystal oscillator (subsystem clock)

1.5 Block Diagram

1.5.1 25-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.5.2 32-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.5.3 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.5.4 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.6 Outline of Functions

Notes 1. In the case of the 4 KB , this is about 3 KB when the self-programming function and data flash function are used.
2. The number of outputs varies, depending on the setting.
(2/2)

Item		25-pin	32-pin	48-pin	64-pin
		R5F10E8x	R5F10EBx	R5F10EGx	R5F10ELx
Clock output/buzzer output		1	2	2	2
		- $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}$, $2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fnain $=20 \mathrm{MHz}$ operation)		- $2.44 \mathrm{kHz}, 4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}$, $2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: $\mathrm{fmain}=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}$, $4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}, 16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fsub $=32.768 \mathrm{kHz}$ operation)	
8/12-bit resolution A/D converter		13 channels	18 channels	24 channels	28 channels
Serial interface		[25-pin products] - CSI: 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel [32-pin products] - CSI: 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART: 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel - CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified ${ }^{2} \mathrm{C}$: 1 channel [48-pin products] - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels - CSI: 1 channel/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}$: 1 channel - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I ${ }^{2} \mathrm{C}: 2$ channels [64-pin products] - CSI: 2 channels/UART: 1 channel/simplified $\mathrm{I}^{2} \mathrm{C}: 2$ channels - CSI: 2 channels/UART: 1 channel/simplified ${ }^{2} \mathrm{C}: 2$ channels - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified $I^{2} C$: 2 channels			
	$I^{2} \mathrm{C}$ bus	1 channel	1 channel	1 channel	1 channel
Multiplier and divider/multiply-accumulator		- 16 bits $\times 16$ bits $=32$ bits (Unsigned or signed) - 32 bits $\div 32$ bits $=32$ bits (Unsigned) - 16 bits $\times 16$ bits +32 bits $=32$ bits (Unsigned or signed)			
DMA controller		2 channels			
Vectored interrupt sources	Internal	24	27	27	27
	External	6	6	10	13
Key interrupt		$0 \mathrm{ch}(4 \mathrm{ch})^{\text {Note } 1}$	$1 \mathrm{ch}(6 \mathrm{ch})^{\text {Note } 1}$	6 ch	10 ch
Reset		- Reset by RESET pin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution ${ }^{\text {Note } 2}$ - Internal reset by RAM parity error - Internal reset by illegal-memory access			
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.03 \mathrm{~V}$ - Power-down-reset: $1.50 \pm 0.03 \mathrm{~V}$			
Voltage detector		1.63 V to 3.06 V (12 stages)			
On-chip debug function		Provided			
Power supply voltage		$\mathrm{V}_{\mathrm{DD}}=1.6$ to 3.6 V			
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			

Notes 1. Can be used by the Peripheral I/O redirection register (PIOR).
2. The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS

Cautions 1. These specifications show target values, which may change after device evaluation.
2. The RL78/G1A has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
3. The pins mounted depend on the product. Refer to $1.3 .1 \quad 25$-pin products to 1.3.4 64 -pin products.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVdoo	$E V_{\text {dDo }} \leq \mathrm{V}_{\text {DD }}$	-0.5 to +6.5	V
	AVDd	AV DDo $\leq \mathrm{V}_{\text {DD }}$	-0.5 to +4.6	V
	Vss		-0.5 to +0.3	V
	EVsso		-0.5 to +0.3	V
	AVss		-0.5 to +0.3	V
REGC pin input voltage	Viregc	REGC	$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to Vod }+0.3^{\text {Note } 1} \end{gathered}$	V
Input voltage	V_{11}	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	$\begin{gathered} -0.3 \text { to EV } V_{D D O}+0.3 \\ \text { and }-0.3 \text { to } V_{D D}+0.3^{\text {Note } 2} \end{gathered}$	V
	V_{12}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	V_{13}	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$	-0.3 to VDD $+0.3{ }^{\text {Note } 2}$	V
	V_{14}	P20 to P27, P150 to P154	-0.3 to AV DD $+0.3^{\text {Note } 3}$	V
Output voltage	Vo1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P63, P70 to P77, P120, P130, P140, P141	-0.3 to EV ${ }_{\text {dDO }}+0.3^{\text {Note 2 }}$	V
	Vo2	P20 to P27, P150 to P154	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3^{\text {Note } 2}$	V
Analog input voltage	$V_{\text {Al1 }}$	ANI16 to ANI30	-0.3 to EVDD0 $+0.3^{\text {Note 2 }}$	V
	$\mathrm{V}_{\text {Al } 2}$	ANIO to ANI12	-0.3 to AVDD $+0.3^{\text {Note 2 }}$	V

Notes 1. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value regulates the absolute maximum ratinwg of the REGC pin. Do not use this pin with voltage applied to it.
2. Must be 6.5 V or lower.
3. Must be 4.6 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

Absolute Maximum Ratings ($\mathrm{TA}=\mathbf{2 5 ^ { \circ }} \mathbf{C}$)(2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Ioh1	Per pin	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	-40	mA
		Total of all pins$-170 \mathrm{~mA}$	P00 to P04, P40 to P43, P120, P130, P140, P141	-70	mA
			P05, P06, P10 to P16, P30, P31, P50, P51, P70 to P77,	-100	mA
	Ioh2	Per pin	P20 to P27, P150 to P154	-0.1	mA
		Total of all pins		-1.3	mA
Output current, low	IoL1	Per pin	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P63, P70 to P77, P120, P130, P140, P141	40	mA
		Total of all pins 170 mA	P00 to P04, P40 to P43, P120, P130, P140, P141	70	mA
			P05, P06, P10 to P16, P30, P31, P50, P51, P60 to P63, P70 to P77	100	mA
	Iol2	Per pin	P20 to P27, P150 to P154	0.4	mA
		Total of all pins		6.4	mA
Operating ambient temperature	T_{A}	In normal operation mode		-40 to +85	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode			
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.2 Oscillator Characteristics

2.2.1 Main system clock oscillator characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDo} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EVss} 0=0 \mathrm{~V}$)

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator	Vss X1 \quad X2	X1 clock oscillation frequency (fx) ${ }^{\text {Note }}$	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 3.6 \mathrm{~V}$	1.0		20.0	MHz
	Vss X1 1 Rd		$1.8 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$	1.0		8.0	MHz
			$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<1.8 \mathrm{~V}$	1.0		4.0	MHz
Crystal resonator	$V_{s s} \mathrm{X} 1 \quad \mathrm{X} 2$	X1 clock oscillation frequency (fx) ${ }^{\text {Note }}$	$2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 3.6 \mathrm{~V}$	1.0		20.0	MHz
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	1.0		8.0	MHz
			$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<1.8 \mathrm{~V}$	1.0		4.0	MHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the $\mathbf{X 1}$ oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.2.2 On-chip oscillator characteristics

(TA $=-20$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDo} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}, \mathrm{Vss}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ${ }^{\text {Note }}$	$\mathrm{fiH}^{\text {f }}$	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	32 MHz selected	31.68	32.00	32.32	MHz
			24 MHz selected	23.76	24.00	24.24	MHz
			16 MHz selected	15.84	16.00	16.16	MHz
			12 MHz selected	11.88	12.00	12.12	MHz
			8 MHz selected	7.92	8.00	8.08	MHz
			4 MHz selected	3.96	4.00	4.04	MHz
			1 MHz selected	0.99	1.00	1.01	MHz
		$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<1.8 \mathrm{~V}$	32 MHz selected	30.40	32.00	33.60	MHz
			24 MHz selected	22.80	24.00	25.20	MHz
			16 MHz selected	15.20	16.00	16.80	MHz
			12 MHz selected	11.40	12.00	12.60	MHz
			8 MHz selected	7.60	8.00	8.40	MHz
			4 MHz selected	3.80	4.00	4.20	MHz
			1 MHz selected	0.95	1.00	1.05	MHz
Low-speed on-chip oscillator clock frequency	fil			12.75	15	17.25	kHz

($\mathrm{T}_{\mathrm{A}}=-40$ to $-20^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{dDo} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ${ }^{\text {Note }}$	fiH	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$	32 MHz selected	31.52	32.00	32.48	MHz
			24 MHz selected	23.64	24.00	24.36	MHz
			16 MHz selected	15.76	16.00	16.24	MHz
			12 MHz selected	11.82	12.00	12.18	MHz
			8 MHz selected	7.88	8.00	8.12	MHz
			4 MHz selected	3.94	4.00	4.06	MHz
			1 MHz selected	0.985	1.00	1.015	MHz
		$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<1.8 \mathrm{~V}$	32 MHz selected	30.24	32.00	33.76	MHz
			24 MHz selected	22.68	24.00	25.32	MHz
			16 MHz selected	15.12	16.00	16.88	MHz
			12 MHz selected	11.34	12.00	12.66	MHz
			8 MHz selected	7.56	8.00	8.44	MHz
			4 MHz selected	3.78	4.00	4.22	MHz
			1 MHz selected	0.945	1.00	1.055	MHz
Low-speed on-chip oscillator clock frequency	fil			12.75	15	17.25	kHz

Note This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

2.2.3 Subsystem clock oscillator characteristics

($\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{dDo} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = EVsso = 0 V)

Resonator	Recommended Circuit	Items	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		XT1 clock oscillation frequency (fxT) ${ }^{\text {Note }}$		32	32.768	35	kHz

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the XT1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.

2. The XT1 oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the X1 oscillator. Particular care is therefore required with the wiring method when the XT1 clock is used.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.3 DC Characteristics

2.3.1 Pin characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVsso}=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ${ }^{\text {Note } 1}$	Ioh1	Per pin for P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	$1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}$			$\begin{gathered} -10.0 \\ \text { Note } 2 \end{gathered}$	mA
		Total of P00 to P04, P40 to P43, P120,$\begin{aligned} & \text { P130, P140, P141 } \\ & \left(\text { When duty }=70 \%{ }^{\text {Note } 3}\right. \text {) } \end{aligned}$	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}$			-10.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{EV}_{\text {DDO }}<2.7 \mathrm{~V}$			-5.0	mA
			$1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<1.8 \mathrm{~V}$			-2.5	mA
		Total of P05, P06, P10 to P16, P30, P31, P50, P51, P70 to P77, (When duty $=70 \%{ }^{\text {Note } 3}$)	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}$			-19.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDO $<2.7 \mathrm{~V}$			-10.0	mA
			$1.6 \mathrm{~V} \leq \mathrm{EV}_{\text {DDO }}<1.8 \mathrm{~V}$			-5.0	mA
		Total of all pins (When duty $=70 \%{ }^{\text {Note } 3}$)	$1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}$			-29.0	mA
	ІОН2	Per pin for P20 to P27, P150 to P154	$1.6 \mathrm{~V} \leq \mathrm{AV} \mathrm{DD} \leq 3.6 \mathrm{~V}$			$-0.1^{\text {Note } 2}$	mA
		Total of all pins (When duty = 70\% ${ }^{\text {Note } 3}$)	$1.6 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$			-1.3	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDDo, Vod pins to an output pin.
2. However, do not exceed the total current value.
3. Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $\mathrm{n} \%$).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=50 \%$ and I он $=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(50 \times 0.01)=-14.0 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Cautions 1. P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 do not output high level in N-ch open-drain mode.
2. Always use $A V_{d D}$ pin with the same potential as the Vdd pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVdd} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{EV}$ dDo $\leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, $\left.\mathrm{Vss}=\mathrm{EVsso}=0 \mathrm{~V}\right)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ${ }^{\text {Note }} 1$	lol1	Per pin for P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141				$20.0{ }^{\text {Note } 2}$	mA
		Per pin for P60 to P63				$15.0{ }^{\text {Note } 2}$	mA
		Total of P00 to P04, P40 to P43, P120, P130, P140, P141 (When duty $=70 \%{ }^{\text {Note } 3}$)	$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 3.6 \mathrm{~V}$			15.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $<2.7 \mathrm{~V}$			9.0	mA
			$1.6 \mathrm{~V} \leq \mathrm{EV}_{\text {DDO }}<1.8 \mathrm{~V}$			4.5	mA
		Total of P05, P06, P10 to P16, P30, P31, P50, P51, P60 to P63, P70 to P77 (When duty $=70 \%{ }^{\text {Note } 3}$)	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {dDo }} \leq 3.6 \mathrm{~V}$			35.0	mA
			$1.8 \mathrm{~V} \leq \mathrm{EV}_{\text {dDo }}<2.7 \mathrm{~V}$			20.0	mA
			$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $<1.8 \mathrm{~V}$			10.0	mA
		Total of all pins (When duty $=70 \%{ }^{\text {Note } 3}$)				50.0	mA
	lol2	Per pin for P20 to P27, P150 to P154				$0.4{ }^{\text {Note 2 }}$	mA
		Total of all pins (When duty $=70 \%^{\text {Note } 3}$)	$1.6 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}$			5.2	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso and Vss pin.
2. However, do not exceed the total current value.
3. Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $n \%$).

- Total output current of pins $=($ loL $\times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=50 \%$ and lol $=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(50 \times 0.01)=14.0 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.

Caution Always use AVDD pin with the same potential as the Vdo pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVdd} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{EV}$ dDo $\leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, $\left.\mathrm{Vss}=\mathrm{EVsso}=0 \mathrm{~V}\right)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{V}_{\mathrm{H} 1}$	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	Normal input buffer	0.8EVddo		EVdoo	V
	$\mathrm{V}_{\mathbf{1 H 2}}$	$\begin{aligned} & \text { P01, P03, P04, P10, P11, } \\ & \text { P13 to P16, P43 } \end{aligned}$	TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.6 \mathrm{~V}$	2.0		EVdoo	V
			TTL input buffer $1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.3 \mathrm{~V}$	1.5		EVdoo	V
	Vı ${ }^{\text {3 }}$	P20 to P27, P150 to P154		0.7 AV do		AVdd	V
	VIH4	P60 to P63		0.7EVddo		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS, RESET		0.8Vdd		VdD	V
Input voltage, low	VIL1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	Normal input buffer	0		0.2EVddo	V
	VIL2	P01, P03, P04, P10, P11, P13 to P16, P43	TTL input buffer $3.3 \mathrm{~V} \leq E V_{\mathrm{DDO}}<3.6 \mathrm{~V}$	0		0.5	V
			TTL input buffer $1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.3 \mathrm{~V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P154		0		0.3AVdD	V
	VIL4	P60 to P63		0		0.3EVddo	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0		0.2VdD	V

Cautions 1. The maximum value of $\mathrm{V}_{\text {н }}$ of pins P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 is EVddo, even in the N -ch open-drain mode.
2. Always use $A V_{d D}$ pin with the same potential as the Vdd pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVdD} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{EVDDo} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$, $\left.\mathrm{Vss}=\mathrm{EV} \mathrm{Ss} 0=0 \mathrm{~V}\right)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{H} 1}=-2.0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} \text { EVDDO }- \\ 0.6 \end{gathered}$			V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 3.6 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{H} 1}=-1.5 \mathrm{~mA} \end{aligned}$	$\begin{gathered} E V_{D D O}^{-} \\ 0.5 \end{gathered}$			V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \text { DDo }<3.6 \mathrm{~V}, \\ & \text { І } \mathrm{CH} 1=-1.0 \mathrm{~mA} \end{aligned}$	$\begin{gathered} E V_{D D O}^{-} \\ 0.5 \end{gathered}$			V
	Voh2	P20 to P27, P150 to P154	$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{AV} \mathrm{DD} \leq 3.6 \mathrm{~V}, \\ & \text { Іонг }=-100 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} A V_{D D}- \\ 0.5 \end{gathered}$			V
Output voltage, Iow	VoL1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P130, P140, P141	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL} 1=3.0 \mathrm{~mA} \end{aligned}$			0.6	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loLL}_{1}=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & \text { loL1 }=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \text { DD0 }<1.8 \mathrm{~V}, \\ & \mathrm{loL} 1.10 .3 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	P20 to P27, P150 to P154	$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}, \\ & \text { loL2 }=400 \mu \mathrm{~A} \end{aligned}$			0.4	V
	Vol3	P60 to P63	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL} 3=3.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \text { DDo } \leq 3.6 \mathrm{~V}, \\ & \mathrm{loL} 3=2.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \text { dDo }<1.8 \mathrm{~V}, \\ & \mathrm{loL} 3=1.0 \mathrm{~mA} \end{aligned}$			0.4	V

Caution 1. P00, P02 to P04, P10 to P15, P43, P50, P71, and P74 do not output high level in N-ch open-drain mode.
2. Always use AVdd pin with the same potential as the Vdd pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVdd} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{EVddo} \leq \mathrm{Vdd} \leq 3.6 \mathrm{~V}$, $\left.\mathrm{Vss}=\mathrm{EV} \mathrm{Vso}=0 \mathrm{~V}\right)$

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P63, P70 to P77, P120, P140, P141	$\mathrm{V}_{1}=E V_{\text {dDo }}$				1	$\mu \mathrm{A}$
	ILIH2	P20 to P27, P137, P150 to P154, RESET	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$				1	$\mu \mathrm{A}$
	ІІІнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	$V_{1}=V_{D D}$	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
	ILIH4	P20 to P27, P150 to P154	$\mathrm{V}_{\mathrm{I}}=\mathrm{AV} \mathrm{VD}$				1	$\mu \mathrm{A}$
Input leakage current, low	ILIL1	```P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P60 to P67, P70 to P77, P120, P140, P141```	$\mathrm{V}_{\mathrm{I}}=\mathrm{EV} \mathrm{Ss}_{0}$				-1	$\mu \mathrm{A}$
	ILIL2	$\begin{aligned} & \text { P20 to P27, P137, } \\ & \text { P150 to P154, } \overline{\text { RESET }} \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{s s}$				-1	$\mu \mathrm{A}$
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{ss}}$	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
	ILlı4	P20 to P27, P150 to P154	$\mathrm{V}_{1}=A V_{s s}$				-1	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru	P00 to P06, P10 to P16, P30, P31, P40 to P43, P50, P51, P70 to P77, P120, P140, P141	$\mathrm{V}_{1}=\mathrm{EV}$ sso, In input port		10	20	100	$\mathrm{k} \Omega$

Caution Always use AVdd pin with the same potential as the Vdd pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.3.2 Supply current characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss $=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
Supply current	IDD1 ${ }^{\text {Note } 1}$	Operating mode	High-speed operation ${ }^{\text {Note } 5}$	$\mathrm{fiH}^{\prime}=32 \mathrm{MHz}{ }^{\text {Note } 3}$	Basic operation	$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		2.1		mA
					Normal operation	$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		4.6	7.0	mA
				$\mathrm{fiH}^{\prime}=24 \mathrm{MHz}{ }^{\text {Note } 3}$	Normal operation	$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		3.7	5.5	mA
				$\mathrm{fiH}^{\prime}=16 \mathrm{MHz}{ }^{\text {Note } 3}$	Normal operation	V do $=3.0 \mathrm{~V}$		2.7	4.0	mA
			Low-speed	$\mathrm{fiH}=8 \mathrm{MHz}^{\text {Note } 3}$	Normal	$V_{D D}=3.0 \mathrm{~V}$		1.2	1.8	mA
					operation	$V_{D D}=2.0 \mathrm{~V}$		1.2	1.8	mA
			Low-voltage	$\mathrm{fiH}=4 \mathrm{MHz}^{\text {Note } 3}$	Normal	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$		1.2	1.7	mA
					operation	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$		1.2	1.7	mA
			High-speed	$\mathrm{f}_{\mathrm{mx}}=20 \mathrm{MHz}^{\text {Note } 2},$	Normal	Square wave input		3.0	4.6	mA
				$\mathrm{V}_{\mathrm{dD}}=3.0 \mathrm{~V}$	operation	Resonator connection		3.2	4.8	mA
				$\mathrm{fmx}^{\prime}=10 \mathrm{MHz}{ }^{\text {Note 2 }}$,	Normal	Square wave input		1.9	2.7	mA
				$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	operation	Resonator connection		1.9	2.7	mA
			Low-speed	$\mathrm{f}_{\mathrm{Mx}}=8 \mathrm{MHz}^{\text {Note } 2},$	Normal	Square wave input		1.1	1.7	mA
				$\mathrm{V} \mathrm{dD}=3.0 \mathrm{~V}$	operation	Resonator connection		1.1	1.7	mA
				$\mathrm{f}_{\mathrm{MX}}=8 \mathrm{MHz}^{\text {Note } 2},$	Normal	Square wave input		1.1	1.7	mA
				$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsub $=32.768 \mathrm{kHz}$	Normal	Square wave input		4.1		$\mu \mathrm{A}$
			clock operation	Note 4 $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$	operation	Resonator connection		4.2		$\mu \mathrm{A}$
				$\text { fsub }=32.768 \mathrm{kHz}$	Normal	Square wave input		4.1	4.9	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	operation	Resonator connection		4.2	5.0	$\mu \mathrm{A}$
				fsub $=32.768 \mathrm{kHz}$	Normal	Square wave input		4.2	5.5	$\mu \mathrm{A}$
				Note 4 $\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$	operation	Resonator connection		4.3	5.6	$\mu \mathrm{A}$
				fsub $=32.768 \mathrm{kHz}$	Normal	Square wave input		4.2	6.3	$\mu \mathrm{A}$
				Note 4 $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	operation	Resonator connection		4.3	6.4	$\mu \mathrm{A}$
				fsub $=32.768 \mathrm{kHz}$	Normal	Square wave input		4.8	7.7	$\mu \mathrm{A}$
				Note 4 $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	operation	Resonator connection		4.9	7.8	$\mu \mathrm{A}$

(Notes and Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

Notes 1. Total current flowing into $V_{D D}$ and $E_{D D D}$, including the input leakage current flowing when the level of the input pin is fixed to $V_{D D}$, EVDDo or $V_{s s}$, EVsso. The values below the MAX. column include the peripheral operation current (except for background operation (BGO)). However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
2. When high-speed on-chip oscillator and subsystem clock are stopped.
3. When high-speed system clock and subsystem clock are stopped.
4. When high-speed on-chip oscillator and high-speed system clock are stopped. When real-time counter and watchdog timer is stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
High speed operation: VDD=2.7 V to $3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz , $\mathrm{VDD}=2.4 \mathrm{~V}$ to $3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
Low speed operation: VDD=1.8 V to $3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
Low voltage operation: Vdd $=1.6 \mathrm{~V}$ to $3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. fiн: High-speed on-chip oscillator clock frequency
3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
4. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
(T A $=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{ddo} \leq \mathrm{Vdd} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EV} \mathrm{Vso}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2 Note 2	HALT mode	High-speed operation ${ }^{\text {Note } 7}$	$\mathrm{fiH}^{\prime}=32 \mathrm{MHz}{ }^{\text {Note } 4}$	$\mathrm{V} D=3.0 \mathrm{~V}$		0.54	1.63	mA
				$\mathrm{fIH}=24 \mathrm{MHz}^{\text {Note } 4}$	$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V}$		0.44	1.28	mA
				$\mathrm{fiHf}=16 \mathrm{MHz}{ }^{\text {Note } 4}$	$\mathrm{V} D=3.0 \mathrm{~V}$		0.40	1.00	mA
			Low-speed operation ${ }^{\text {Note } 7}$	$\mathrm{fiH}=8 \mathrm{MHz}{ }^{\text {Note } 4}$	$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		260	530	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		260	530	$\mu \mathrm{A}$
			Low-voltage operation ${ }^{\text {Note } 7}$	$\mathrm{fiH}^{\prime}=4 \mathrm{MHz}{ }^{\text {Note } 4}$	$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		420	640	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		420	640	$\mu \mathrm{A}$
			High-speed operation ${ }^{\text {Note } 7}$	$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.28	1.00	mA
					Resonator connection		0.45	1.17	mA
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=10 \mathrm{MHz}^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.19	0.60	mA
					Resonator connection		0.26	0.67	mA
			Low-speed operation ${ }^{\text {Note } 7}$	$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=8 \mathrm{MHz} z^{\text {Note } 3}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		95	330	$\mu \mathrm{A}$
					Resonator connection		145	380	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{f}_{\mathrm{MX}}=8 \mathrm{MHz}^{\mathrm{Note} \mathrm{e}}, \\ & \mathrm{~V}_{\mathrm{DD}}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		95	330	$\mu \mathrm{A}$
					Resonator connection		145	380	$\mu \mathrm{A}$
			Subsystem clock operation	$\begin{aligned} & \mathrm{fsuB}=32.768 \mathrm{kHz}{ }^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.25		$\mu \mathrm{A}$
					Resonator connection		0.44		$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.30	0.57	$\mu \mathrm{A}$
					Resonator connection		0.49	0.76	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} z^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.33	1.17	$\mu \mathrm{A}$
					Resonator connection		0.52	1.36	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.36	1.97	$\mu \mathrm{A}$
					Resonator connection		0.55	2.16	$\mu \mathrm{A}$
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz}^{\text {Note } 5} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.97	3.37	$\mu \mathrm{A}$
					Resonator connection		1.16	3.56	$\mu \mathrm{A}$
	IDD3 ${ }^{\text {Note } 6}$	STOP mode	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18		$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.23	0.50	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.26	1.10	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.29	1.90	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				0.90	3.30	$\mu \mathrm{A}$

(Notes and Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

Notes 1. Total current flowing into $V_{D D}$ and $E V_{D D O}$, including the input leakage current flowing when the level of the input pin is fixed to $V_{D D}$, EVDDo or $V_{s s}$, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors.
2. During HALT instruction execution by flash memory.
3. When high-speed on-chip oscillator and subsystem clock are stopped.
4. When high-speed system clock and subsystem clock are stopped.
5. When operating real-time clock (RTC) and setting ultra-low current consumption (AMPHS1 = 1). When high-speed on-chip oscillator and high-speed system clock are stopped. When watchdog timer is stopped. The values below the MAX. column include the leakage current.
6. When high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When watchdog timer is stopped. The values below the MAX. column include the leakage current.
7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

High speed operation: Vdd =2.7 V to $3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz , $\mathrm{VdD}=2.4 \mathrm{~V}$ to $3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz Low speed operation: VdD $=1.8 \mathrm{~V}$ to $3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
Low voltage operation: VDD $=1.6 \mathrm{~V}$ to $3.6 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
2. flH: High-speed on-chip oscillator clock frequency
3. fSUB: Subsystem clock frequency (XT1 clock oscillation frequency)
4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA $=25^{\circ} \mathrm{C}$

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.
$\left(\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}\right.$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{ddo} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EV}$ sso $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
RTC operating current	$I_{\text {RTC }}{ }^{\text {Notes } 1,2}$	$\mathrm{fsub}=32.768 \mathrm{kHz}$	Real-time clock operation			0.02		$\mu \mathrm{A}$
			Interval timer operation			0.02		
Watchdog timer operating current	IWDT ${ }^{\text {Notes 2,3 }}$	$\mathrm{fli}=15 \mathrm{kHz}$				0.22		$\mu \mathrm{A}$
A/D converter operating current	IAdC ${ }^{\text {Note } 4}$	Reference power supply is other than the internal reference voltage, $\mathrm{AV} D \mathrm{DD}=3.6 \mathrm{~V}$		ANI0 to ANI12		460	1090	$\mu \mathrm{A}$
				ANI16 to ANI30		400	950	$\mu \mathrm{A}$
		Reference power supply is the internal reference voltage,$A V D D=3.6 \mathrm{~V}$		ANIO to ANI12, ANI16 to ANI30		400	950	$\mu \mathrm{A}$
Temperature sensor operating current	Itmps					75		$\mu \mathrm{A}$
LVD operating current	ILvi ${ }^{\text {Note } 5}$					0.08		$\mu \mathrm{A}$
BGO operating current	IBgo ${ }^{\text {Note } 6}$					2.50	12.20	mA

Notes 1. Current flowing only to the real-time clock (excluding the operating current of the XT1 oscillator). The TYP. value of the current value of the RL78/G1A is the sum of the TYP. values of either IDD1 or IDD2, and Irtc, when the real-time clock operates in operation mode or HALT mode. The Idd1 and Idd2 MAX. values also include the real-time clock operating current. However, IDD2 subsystem clock operation includes the operational current of the real-time clock.
2. When high speed on-chip oscillator and high-speed system clock are stopped.
3. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78/G1A is the sum of IdD1, IdD2 or IdD3 and Iwdt when fcLk $=$ fsub when the watchdog timer operates in STOP mode.
4. Current flowing only to the A/D converter. The current value of the RL78/G1A is the sum of IdD1 or ldD2 and Iadc when the A/D converter operates in an operation mode or the HALT mode.
5. Current flowing only to the LVD circuit. The current value of the RL78/G1A is the sum of IdD1, IdD2 or Iddз and Ilvı when the LVD circuit operates in the Operating, HALT or STOP mode.
6. Current flowing only to the BGO. The current value of the RL78/G1A is the sum of IDD1 or IDD2 and IbGo when the BGO operates in an operation mode.

Remarks 1. fı: Low-speed on-chip oscillator clock frequency
2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
3. fcLk: CPU/peripheral hardware clock frequency
4. Temperature condition of the TYP. value is $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

2.4 AC Characteristics

2.4.1 Basic operation

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVdD} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDo} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, Vss = EVsso $=0 \mathrm{~V}$)

(Note, Caution and Remark are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

Note The following conditions are required for low voltage interface when Evddo<Vdd $1.8 \mathrm{~V} \leq \mathrm{EV}_{\text {dDo }}<2.7 \mathrm{~V}: \mathrm{MIN} .125 \mathrm{~ns}$ $1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $<1.8 \mathrm{~V}$: MIN. 250 ns

Caution Always use AVdD pin with the same potential as the VdD pin.

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSOn bit of timer mode register On (TMROn). n : Channel number ($\mathrm{n}=$ 0 to 7))

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.5 Peripheral Functions Characteristics

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{EV}$ Sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate ${ }^{\text {Note } 1}$					$\mathrm{fmak}^{6} \mathrm{~S}^{\text {Note } 2}$	bps
		Theoretical value of the maximum transfer rate fсLk $=32 \mathrm{MHz}$, fмck $=\mathrm{fcLk}$			5.3	Mbps

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Notes 1. Transfer rate in the SNOOZE mode is max. 9600 bps , min. 4800 bps.
2. The following conditions are required for low voltage interface when Evddo < VDd.
$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo $<2.7 \mathrm{~V}$: MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{dD}}<2.4 \mathrm{~V}$: MAX. 1.3 Mbps
$1.6 \mathrm{~V} \leq \mathrm{EV}$ doo < 1.8 V : MAX. 0.6 Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register \mathbf{g} (POMg).

Remarks 1. q : UART number ($q=0$ to 2), g : PIM and POM number $(g=0,1)$
2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to $03,10,11$)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.
(2) During communication at same potential (CSI mode) (master mode (fmck/2), SCKp... internal clock output)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EV}$ dDo $\leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V} s=E V \mathrm{sso}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time	tксү1	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {DDo }} \leq 3.6 \mathrm{~V}$	$83.3{ }^{\text {Note } 1}$			ns
$\overline{\text { SCKp }}$ high-/low-level width	$\mathrm{t}_{\mathrm{KH} 1} \text {, }$ tKL1	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {doo }} \leq 3.6 \mathrm{~V}$	$\mathrm{tkCy}_{1 / 2} \mathbf{- 1 0}$			ns
SIp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 2}$	tsıк1	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {ddo }} \leq 3.6 \mathrm{~V}$	$33^{\text {Note } 5}$			ns
SIp hold time (from $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 3}$	tksil	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{Ddo} \leq 3.6 \mathrm{~V}$	10			ns
Delay time from $\overline{\text { SCKp }} \downarrow$ to SOp output ${ }^{\text {Note } 4}$	tksO1	$\mathrm{C}=20 \mathrm{pF}^{\text {Note } 6}$			10	ns

Notes 1. The value must also be $2 / f$ fck or more.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to $\overline{\text { SCKp }} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from $\overline{\text { SCKp }} \uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
5. Using the fмск within 24 MHz .
6. C is the load capacitance of the $\overline{S C K p}$ and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. This specification is valid only when CSIOO's peripheral I/O redirect function is not used.
2. p : CSI number $(p=00)$, m : Unit number $(m=0)$, n : Channel number $(n=0)$, $\mathrm{g}:$ PIM and POM numbers $(\mathrm{g}=1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number $(\mathrm{mn}=00)$)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.
(3) During communication at same potential (CSI mode) (master mode (fмск/4), SCKp... internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp cycle time }}$	tkcy1	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} 53.6 \mathrm{~V}$	$125^{\text {Note } 1}$			ns
		$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}^{5} 3.6 \mathrm{~V}$	$250{ }^{\text {Note } 1}$			ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 3.6 \mathrm{~V}$	$500{ }^{\text {Note } 1}$			ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 3.6 \mathrm{~V}$	$1000{ }^{\text {Note } 1}$			ns
$\overline{\text { SCKp }}$ high-/low-level width	tкH1, tкı1	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {doo }} \leq 3.6 \mathrm{~V}$	tкıy1/2-18			ns
		$2.4 \mathrm{~V} \leq \mathrm{EV}_{\text {doo }} \leq 3.6 \mathrm{~V}$	tксү1/2-38			ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}_{\text {DDO }} \leq 3.6 \mathrm{~V}$	tк¢ү1/2-50			ns
		$1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}^{5} 3.6 \mathrm{~V}$	tKCy1/2 - 100			ns
Slp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 2}$	tsIK1	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} 53.6 \mathrm{~V}$	38			ns
		$2.4 \mathrm{~V} \leq \mathrm{EV}_{\text {DDO }} \leq 3.6 \mathrm{~V}$	75			ns
		$1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}^{5} 3.6 \mathrm{~V}$	150			ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 3.6 \mathrm{~V}$	300			ns
	tks11		19			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output ${ }^{\text {Note }} 4$	tksO1	$\mathrm{C}=30 \mathrm{pF}^{\text {Note } 5}$			25	ns

Notes 1. The value must also be $4 / \mathrm{fclk}$ or more.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to $\overline{\text { SCKp }} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from $\overline{\text { SCKp }} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from $\overline{\mathrm{SCKp}} \uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
5. C is the load capacitance of the $\overline{S C K p}$ and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. This specification is valid only when CSIOO's peripheral I/O redirect function is not used.
2. p : CSI number ($p=00,01,10,11,20,21$), m : Unit number $(m=0,1)$, n : Channel number ($n=0$ to 2$)$, g : PIM and POM numbers $(\mathrm{g}=0,1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to $03,10,11$)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}$ dDo $\leq \mathrm{VdD} \leq 3.6 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time ${ }^{\text {Note } 5}$	tксү2	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {DDo }}<3.6 \mathrm{~V}$	16 MHz < fmck	8/fmск			ns
			$\mathrm{fmak}^{\text {¢ }}$ [16 MHz	6/fmск			ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}_{\text {do }}<2.7 \mathrm{~V}$	16 MHz < $\mathrm{fmck}^{\text {m }}$	8/fmск			ns
			$\mathrm{fmck} \leq 16 \mathrm{MHz}$	6/fmск			ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}_{\text {DDO }}<1.8 \mathrm{~V}$		6/fmск			ns
$\overline{\text { SCKp }}$ high-/low-level width	tкн2, tkL2	$1.6 \mathrm{~V} \leq \mathrm{EV}_{\text {dDo }} \leq 3.6 \mathrm{~V}$		tkcy/2			ns
Slp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) Note 1	tsıK2	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {dDo }} \leq 3.6 \mathrm{~V}$		50			ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}_{\text {DD }}<2.7 \mathrm{~V}$		80			ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}_{\text {dDo }}<1.8 \mathrm{~V}$		160			ns
Slp hold time (from $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 2}$	tks12	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {DDO }} \leq 3.6 \mathrm{~V}$		1/fмск+31			ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}_{\text {DDO }}<2.7 \mathrm{~V}$		1/fмск +31			ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}_{\text {DD }}<1.8 \mathrm{~V}$		1/fмск+ 250			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output ${ }^{\text {Note } 3}$	tksO2	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {DDO }}<3.6 \mathrm{~V}$			2/fмск+44	ns
			$2.4 \mathrm{~V} \leq \mathrm{EVDDO}^{2} 2.7 \mathrm{~V}$			2/fмск+75	ns
			$1.8 \mathrm{~V} \leq \mathrm{EV}_{\text {DDo }}<2.4 \mathrm{~V}$			2/fmск+110	ns
			$1.6 \mathrm{~V} \leq \mathrm{EV}_{\text {DDo }}<1.8 \mathrm{~V}$			2/fmск+220	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from $\overline{\text { SCKp }} \uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. C is the load capacitance of the SOp output lines.
5. Transfer rate in the SNOOZE mode : MAX. 1 Mbps

Caution Select the TTL input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp

 pin by using port input mode register g (PIMg) and port output mode register g (POMg).Remarks 1. p: CSI number $(p=00,01,10,11,20,21)$, m : Unit number $(m=0,1)$, n : Channel number $(\mathrm{n}=0$ to 2),
g : PIM number $(\mathrm{g}=0,1)$
2. $f_{м с к: ~ S e r i a l ~ a r r a y ~ u n i t ~ o p e r a t i o n ~ c l o c k ~ f r e q u e n c y ~}^{\text {a }}$
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to $03,10,11$)

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn $=0$ and CKPmn $=0$, or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.)

Remarks 1. p : CSI number ($p=00,01,10,11,20,21$)
2. m : Unit number, n : Channel number ($\mathrm{mn}=00$ to $03,10,11$)

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
(5) During communication at same potential (simplified $I^{2} C$ mode)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD} 0} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{E}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 3.6 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		1000	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDo} \leq 3.6 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$		400	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, R_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$		300	kHz
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$		250	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \text { DDo } \leq 3.6 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 3.6 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1550		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1850		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 3.6 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 3.6 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1550		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1850		ns
Data setup time (reception)	tsu:DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 3.6 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$\underset{\substack{\text { Note }}}{1 / \mathbf{f m c k ~}_{\text {Nut }}+85}$		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDD} \leq 3.6 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	$1 / \text { fmck }_{\substack{\text { Note }}} 145$		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	$\underset{\substack{\text { Note }}}{1 / \mathrm{fmck}+230}$		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	$\underset{\substack{\text { Note }}}{1 / \text { fmck }+290}$		ns
Data hold time (transmission)	thd:dAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}^{\leq} 3.6 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDo} \leq 3.6 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	0	405	ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	0	405	ns

Note Set the fмск value to keep the hold time of SCLr = "L" and SCLr = "H".
(Caution and Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode mode connection diagram (during communication at same potential)

Simplified $I^{2} C$ mode serial transfer timing (during communication at same potential)

Caution Select the TTL input buffer and the N-ch open drain output (Vdo tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register \mathbf{g} (PIMg) and port output mode register h (POMh).

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$:Communication line (SDAr) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance
2. r : IIC number ($\mathrm{r}=00,01,10,11,20,21$), g : PIM number $(g=0,1)$, h : POM number $(h=0,1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0,1$), n : Channel number ($n=0$ to 3), $m n=00$ to $03,10,11$)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.
(6) Communication at different potential (2.5 V) (UART mode) (dedicated baud rate generator output) (1/2) ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Transfer rate		reception	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$				fuck/6 $6^{\text {Note }}$	bps
				Theoretical value of the maximum transfer rate fсцк $=32 \mathrm{MHz}$, fмck $=$ fclk			5.3	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$				$\begin{gathered} \substack{\mathrm{f}_{\text {Nock }} \text { 1to }} \end{gathered}$	bps
				Theoretical value of the maximum transfer rate fcLk $=8 \mathrm{MHz}$, fмск $=$ fclk			1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode : MAX. 9600 bps, MIN. 4800 bps
2. Use it with $E V_{d d o} \geq V_{b}$.
3. The following conditions are required for low voltage interface when EVddo < Vdd.
$2.4 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<2.7 \mathrm{~V}$: MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq$ EVddo < 2.4 V : MAX. 1.3 Mbps
$1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{dDo}}<1.8 \mathrm{~V}$: MAX. 0.6 Mbps

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdo tolerance) mode for the TxDq pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg).

Remarks 1. $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. $\mathrm{q}:$ UART number ($\mathrm{q}=0$ to 2), g : PIM and POM number $(\mathrm{g}=0,1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to $03,10,11$)
4. V_{IH} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in UART mode.
$2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}$
$1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{Ddo}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}$: $\mathrm{V}_{\mathrm{IH}}=1.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{IL}}=0.32 \mathrm{~V}$
5. UART2 cannnot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
(6) Communication at different potential (2.5 V) (UART mode) (dedicated baud rate generator output) (2/2)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{dD} 0} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V} s=\mathrm{EV}$ sso $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Transfer rate		transmission	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$				$\begin{array}{\|c} \text { Notes } \\ 1,2 \end{array}$	bps
				Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}=2.3 \mathrm{~V}$			$1.2{ }^{\text {Notet } 5}$	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$				$\begin{array}{l\|} \text { Notes } \\ 1,4,5 \\ \hline \end{array}$	bps
				Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{b}}=1.6 \mathrm{~V}$			$\begin{aligned} & 0.43 \\ & \text { Note } 6 \end{aligned}$	Mbps

Notes 1. Transfer rate in the SNOOZE mode : MAX. 9600 bps, MIN. 4800 bps
2. The smaller maximum transfer rate derived by using fмск/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq$ EVodo $<3.6 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.0}{V_{b}}\right)\right\} \times 3} \quad[b p s]$

Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{C}_{b} \times \mathrm{R}_{\mathrm{b}} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{b}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100[\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

3. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 2 above to calculate the maximum transfer rate under conditions of the customer.
4. Use it with $E V_{d o d} \geq \mathrm{V}_{\mathrm{b}}$.
5. The smaller maximum transfer rate derived by using $\mathrm{fmck}_{\mathrm{M} / 6}$ or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD}}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{1.5}{V_{b}}\right)\right\} \times 3}[b p s]$

Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{1.5}{V_{b}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100$ [\%]

* This value is the theoretical value of the relative difference between the transmission and reception sides.

6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdo tolerance) mode for the TxDq pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg).

Remarks 1. $\mathrm{Rb}[\Omega]$:Communication line (TxDq) pull-up resistance,
$\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (TxDq) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. q : UART number ($q=0$ to 2), g : PIM and POM number $(g=0,1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ($\mathrm{mn}=00$ to $03,10,11$)
4. V_{IH} and V_{IL} below are observation points for the $A C$ characteristics of the serial array unit when communicating at different potentials in UART mode.

$$
\begin{aligned}
& 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{H}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V} \\
& 1.8 \mathrm{~V} \leq \mathrm{E}_{\mathrm{DDO}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.32 \mathrm{~V}
\end{aligned}
$$

5. UART2 cannot communicate at different potential when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.

UART mode connection diagram (during communication at different potential)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

UART mode bit width (during communication at different potential) (reference)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vid tolerance) mode for the TxDq pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg).

Remarks 1. UART2 cannot communicate at different potentia when bit 1 (PIOR1) of peripheral I/O redirection register (PIOR) is 1.
2. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$:Communication line (TxDq) pull-up resistance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
3. q : UART number ($q=0$ to 2), g : PIM and POM number $(g=0,1)$

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
(7) Communication at different potential (2.5 V) (fmck/2) (CSI mode) (master mode, $\overline{\mathrm{SCKp}}$... internal clock output)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD} 0} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time	tксү1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$300{ }^{\text {Note } 1}$			ns
$\overline{\text { SCKp }}$ high-level width	tkH1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} \mathrm{t}_{\mathrm{kCr} 1} / 2- \\ 120 \end{gathered}$			ns
$\overline{\text { SCKp }}$ low-level width	tkL1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{VDDo}_{\mathrm{D}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	tkcy $1 / 2-10$			ns
SIp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 2}$	tsik1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	121			ns
SIp hold time (from $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 2}$	tksı1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	10			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output ${ }^{\text {Note } 2}$	tksor	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			130	ns
SIp setup time (to $\overline{\mathrm{SCKp}} \downarrow)^{\text {Note } 3}$	tsik1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	33			ns
Slp hold time (from $\overline{\mathrm{SCKp}} \downarrow$) ${ }^{\text {Note } 3}$	tksı1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}^{2}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	10			ns
Delay time from $\overline{\mathrm{SCKp}} \uparrow$ to SOp output ${ }^{\text {Note } 3}$	tksO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			10	ns

Notes 1. The value must also be $2 / \mathrm{fclk}$ or more.
2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
3. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
(Caution and Remark are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3 .4 64-pin products.

CSI mode connection diagram (during communication at different potential)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin and $\overline{\text { SCKp }}$ pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. Rb[$\Omega \Omega$:Communication line $(\overline{\mathrm{SCKp}}, \mathrm{SOp})$ pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line $(\overline{\mathrm{SCKp}}, \mathrm{SOp})$ load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. p : CSI number $(p=00)$, m : Unit number $(m=0)$, n : Channel number $(n=0)$, $\mathrm{g}:$ PIM and POM number $(\mathrm{g}=1)$
3. V_{IH} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.

$$
2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}
$$

4. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number $(\mathrm{mn}=00)$

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
(8) Communication at different potential (2.5 V) (fmck/4) (CSI mode) (master mode, $\overline{\text { SCKp }}$... internal clock output) (1/2)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD} 0} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time	tkcy1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}^{<}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$500{ }^{\text {Note }}$			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}^{<}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	$1150{ }^{\text {Note }}$			ns
$\overline{\text { SCKp }}$ high-level width	tкH1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}^{<}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	tkcy1/2 - 170			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}^{<} 3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	tкcyı/2 458			ns
$\overline{\text { SCKp }}$ low-level width	tkL1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$\mathrm{tkcy}_{1} / 2-18$			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, R_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	tkcy $1 / 2-50$			ns

Note The value must also be $4 /$ fclk or more.

Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdo tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
2. Use it with $E V_{D D O} \geq V_{b}$.

Remarks 1. $\mathrm{Rb}[\Omega]:$ Communication line $(\overline{\mathrm{SCKp}}, \mathrm{SOp})$ pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line $(\overline{\mathrm{SCKp}}, \mathrm{SOp})$ load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}$: Communication line voltage
2. p : CSI number ($p=00,01,10,20$), m : Unit number , n : Channel number ($m=00,01,02,10$), g : PIM and POM number ($\mathrm{g}=0,1$)
3. V_{IH} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.

$$
\begin{aligned}
& 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V} \\
& 1.8 \mathrm{~V} \leq \mathrm{E}_{\mathrm{DDO}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.32 \mathrm{~V}
\end{aligned}
$$

4. CSI01, CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
(8) Communication at different potential (2.5 V) (fmck/4) (CSI mode) (master mode, $\overline{\text { SCKp}}$... internal clock output) (2/2)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD} 0} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Slp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 1}$	tsik1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}^{<} 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	177			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	479			ns
SIp hold time (from $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 1}$	tksı1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}^{2}=3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	19			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	19			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output ${ }^{\text {Note } 1}$	tKsO1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}^{<} 3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			195	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \text { DDo }<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$			483	ns
Slp setup time (to $\overline{\mathrm{SCKp}} \downarrow)^{\text {Note } 2}$	tsik1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	44			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	110			ns
Slp hold time (from $\overline{\mathrm{SCKp}} \downarrow)^{\text {Note } 2}$	tksı1	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	19			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}^{<}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, R_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	19			ns
Delay time from $\overline{\mathrm{SCKp}} \uparrow$ to SOp output ${ }^{\text {Note } 2}$	tksor	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}^{<}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			25	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}^{2}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$			25	ns

Notes 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
(Cautions and Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3 .4 64-pin products.

CSI mode connection diagram (during communication at different potential)

Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdo tolerance) mode for the SOp pin and $\overline{S C K p}$ pin by using port input mode register g (PIMg) and port output mode register g (POMg).
2. Use it with $E V_{D D 0} \geq V_{b}$.

Remarks 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$:Communication line ($\overline{\mathrm{SCKp}}, \mathrm{SOp}$) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line $(\overline{\mathrm{SCKp}}, \mathrm{SOp})$ load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. p : CSI number ($p=00,01,10,20$), m : Unit number , n : Channel number ($m \mathrm{~m}=00,01,02,10$), g : PIM and POM number $(\mathrm{g}=0,1)$
3. V_{IH} and V_{IL} below are observation points for the AC characteristics of the serial array unit when communicating at different potentials in CSI mode.

$$
\begin{aligned}
& 2.7 \mathrm{~V} \leq \mathrm{E}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{VH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V} \\
& 1.8 \mathrm{~V} \leq \mathrm{E}_{\mathrm{DDO}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}: \mathrm{V}_{\mathrm{H}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.32 \mathrm{~V}
\end{aligned}
$$

4. CSI01, CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn $=0$, or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn $=0$.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vod tolerance) mode for the SOp pin and $\overline{\text { SCKp }}$ pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. $\mathrm{p}: \operatorname{CSI}$ number $(\mathrm{p}=00,01,10,20)$, m : Unit number, n : Channel number $(\mathrm{m}=00,01,02,10)$, g : PIM and POM number ($\mathrm{g}=0,1$)
2. CSI01, CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
(9) Communication at different potential (2.5 V) (CSI mode) (slave mode, $\overline{\text { SCKp... external clock input) }}$ ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD} 0} \leq \mathrm{V} \mathrm{DD} \leq 3.6 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
$\overline{\text { SCKp }}$ cycle time ${ }^{\text {Note } 1}$	tксү2	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DD}}<3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$	24 MHz < fмск	20/fмск			ns
			$20 \mathrm{MHz}<\mathrm{fmCK} \leq 24 \mathrm{MHz}$	16/fмск			ns
			$16 \mathrm{MHz}<\mathrm{fmck} \leq 20 \mathrm{MHz}$	14/fм мск			ns
			8 MHz < $\mathrm{fmCK} \leq 16 \mathrm{MHz}$	12/fmск			ns
			4 MHz < $\mathrm{fmck} \leq 8 \mathrm{MHz}$	8/fмск			ns
			$\mathrm{fmCk} \leq 4 \mathrm{MHz}$	6/fмск			ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDD}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note } 2} \end{aligned}$	24 MHz < fmск	48/fмск			ns
			$20 \mathrm{MHz}<\mathrm{f}_{\mathrm{mck}} \leq 24 \mathrm{MHz}$	36/fм мск			ns
			$16 \mathrm{MHz}<\mathrm{f}_{\mathrm{McK}} \leq 20 \mathrm{MHz}$	32/fmск			ns
			$8 \mathrm{MHz}<\mathrm{fmCK} \leq 16 \mathrm{MHz}$	26/fмск			ns
			$4 \mathrm{MHz}<\mathrm{fmCK}^{5} 8 \mathrm{MHz}$	16/fм мск			ns
			$\mathrm{fmск} \leq 4 \mathrm{MHz}$	10/fmск			ns
SCKp high-/low-level width	tkH2, tкı2	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {dDo }}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{tkcy}_{2} / 2- \\ 18 \end{gathered}$			ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}_{\text {dDo }}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note 2 }}$		$\begin{gathered} \mathrm{tkcy} 2 / 2- \\ 50 \end{gathered}$			ns
Slp setup time (to $\overline{\mathrm{SCKp}} \uparrow$) Note 3	tsik2	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\text {dDo }} \leq 3.6 \mathrm{~V}$		60			ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $<3.3 \mathrm{~V}$		97			ns
SIp hold time (from $\overline{\mathrm{SCKp}} \uparrow$) ${ }^{\text {Note } 4}$	tks ${ }^{2}$			1/fıск +31			ns
Delay time from $\overline{\mathrm{SCKp}} \downarrow$ to SOp output ${ }^{\text {Note } 5}$	tkso2	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$				2/fмск + 214	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note } 2} \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, R_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$				2/fмск + 573	ns

Notes 1. Transfer rate in the SNOOZE mode : MAX. 1 Mbps
2. Use it with $E V_{D D o} \geq V_{b}$.
3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from $\overline{S C K p} \downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from $\overline{\text { SCKp }} \uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
(Caution and Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

CSI mode connection diagram (during communication at different potential)

Caution Select the TTL input buffer for the SIp pin and $\overline{\text { SCKp }}$ pin and the N-ch open drain output (Vdo tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. Rb[$\Omega]$:Communication line (SOp) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SOp) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. p : CSI number $(p=00,01,10,20)$, m : Unit number $(m=0,1)$, n : Channel number $(n=00,01,02,10)$, g : PIM and POM number $(\mathrm{g}=0,1)$
3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ($\mathrm{mn}=00,01,02,10$)
4. $\mathrm{V}_{\text {IH }}$ and $\mathrm{V}_{\text {IL }}$ below are observation points for the AC characteristics of the serial array unit when
communicating at different potentials in CSI mode.

$$
\begin{aligned}
& 2.7 \mathrm{~V} \leq \mathrm{E}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V} \\
& 1.8 \mathrm{~V} \leq \mathrm{E}_{\mathrm{DDO}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.32 \mathrm{~V}
\end{aligned}
$$

5. CSI01, CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

CSI mode serial transfer timing (slave mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn $=0$, or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)

Caution Select the TTL input buffer for the Slp pin and SCKp pin and the N-ch open drain output (Vdo tolerance) mode for the SOp pin by using port input mode register \mathbf{g} (PIMg) and port output mode register g (POMg).

Remarks 1. p : CSI number ($\mathrm{p}=00,01,10,20$), m : Unit number, n : Channel number ($\mathrm{mn}=00,01,02,10$), g : PIM and POM number ($\mathrm{g}=0,1$)
2. CSI01, CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.
(10) Communication at different potential (2.5 V) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode) (1/2)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		1000	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		400	kHz
		$\begin{aligned} & \hline 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note } 1,}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		300	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note } 1}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1550		ns
Hold time when SCLr = " H "	tıIGH	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	200		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	600		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note } 1,}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	610		ns

(Notes, Caution and Remarks are listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.
(10) Communication at different potential (2.5 V) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode) (2/2)
($\mathrm{T}_{\mathrm{A}}=-40$ to $\left.+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD} 0 \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V} s=E V s s o=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data setup time (reception)	tsu:Dat	$\begin{aligned} & 2.7 \mathrm{~V} \leq E \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$1 / \mathrm{fmCk}_{\substack{\text { Note 2 }}}+135$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$\underset{\substack{\text { Nole 2 }}}{1 / \mathrm{fmCk}+190}$		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq E \mathrm{~V}_{\mathrm{DDO}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Notes } 1,} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	$\underset{\substack{\text { Note 2 }}}{1 / \mathrm{fm}_{\mathrm{mck}}+190}$		ns
Data hold time (transmission)	thd:dat	$\begin{aligned} & 2.7 \mathrm{~V} \leq E \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq E \mathrm{~V}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	355	ns
		$\begin{aligned} & \hline 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}^{\text {Note } 1,} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	0	405	ns

Notes 1. Use it with $E V_{D D O} \geq V_{b}$.
2. Set the fмск value to keep the hold time of $\operatorname{SCLr}=$ "L" and SCLr = "H".

Caution Select the TTL input buffer and the N -ch open drain output (VdD tolerance) mode for the SDAr pin and the N -ch open drain output (Vdo tolerance) mode for the SCLr pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg).
(Remarks is listed on the next page.)

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

Simplified $I^{2} C$ mode connection diagram (during communication at different potential)

Simplified $I^{2} C$ mode serial transfer timing (during communication at different potential)

Caution Select the TTL input buffer and the N-ch open drain output (Vdo tolerance) mode for the SDAr pin and the N -ch open drain output (Vod tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remarks 1. Rb[Ω]:Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance, $\mathrm{V}_{\mathrm{b}}[\mathrm{V}]$: Communication line voltage
2. r : IIC number ($r=00,01,10,20$), g : PIM, POM number $(g=0,1)$
3. fмск: Serial array unit operation clock frequency $^{\text {a }}$
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00,01,02,10$)
4. V_{IH} and V_{IL} below are observation points for the $A C$ characteristics of the serial array unit when communicating at different potentials in simplified $I^{2} \mathrm{C}$ mode mode.

$$
\begin{aligned}
& 2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.6 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V} \\
& 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}: \mathrm{V}_{\mathrm{IH}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.32 \mathrm{~V}
\end{aligned}
$$

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.5.2 Serial interface IICA

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDD} \leq \mathrm{V} \mathrm{DD} \leq 3.6 \mathrm{~V}, \mathrm{Vss}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		Standard Mode		Fast Mode		Fast Mode Plus		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: $\text { fсLk } \geq 10 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 3.6 \mathrm{~V}$					0	1000	kHz
		Fast mode: $\text { fcLk } \geq 3.5 \mathrm{MHz}$	$1.8 \mathrm{~V} \leq \mathrm{EV}_{\text {DDo }} \leq 3.6 \mathrm{~V}$			0	400			kHz
		Normal mode: $\text { fcık } \geq 1 \mathrm{MHz}$	$1.6 \mathrm{~V} \leq \mathrm{EV}_{\text {DDo }} \leq 3.6 \mathrm{~V}$	0	100					kHz
Setup time of restart condition	tsu:STA			4.7		0.6		0.26		$\mu \mathrm{S}$
Hold time ${ }^{\text {Note } 1}$	thd:STA			4.0		0.6		0.26		$\mu \mathrm{s}$
Hold time when SCLA0 = "L"	tow			4.7		1.3		0.5		$\mu \mathrm{s}$
Hold time when SCLA0 = "H"	thigh			4.0		0.6		0.26		$\mu \mathrm{s}$
Data setup time (reception)	tsu:dat			250		100		50		ns
Data hold time (transmission) ${ }^{\text {Note } 2}$	thd:dat			0	3.45	0	0.9	0		$\mu \mathrm{s}$
Setup time of stop condition	tsu:sto			4.0		0.6		0.26		$\mu \mathrm{s}$
Bus-free time	tbuF			4.7		1.3		0.5		$\mu \mathrm{s}$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the $\overline{\mathrm{ACK}}$ (acknowledge) timing.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

$$
\begin{array}{ll}
\text { Standard mode: } & C_{b}=400 \mathrm{pF}, R_{b}=2.7 \mathrm{k} \Omega \\
\text { Fast mode: } & \mathrm{Cb}_{\mathrm{b}}=320 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.1 \mathrm{k} \Omega \\
\text { Fast mode plus: } & \mathrm{C}_{\mathrm{b}}=120 \mathrm{pF}, R_{b}=1.1 \mathrm{k} \Omega
\end{array}
$$

IICA serial transfer timing

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.5.3 On-chip debug (UART)

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV}$ DDD $\leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{Vss}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate			115.2 k		1 M	bps

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

 ANI pin : ANIO to ANI12 (supply ANI pin to AVdo)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=0 \mathrm{~V}$, AV ss $=0 \mathrm{~V}$, Reference voltage (+) $=$ AVrefp, Reference voltage (-) = AVrefm $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		12	bit
			$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		$10^{\text {Note } 1}$	
			$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	$8^{\text {Note } 2}$			
Overall error ${ }^{\text {Note } 3}$	AINL	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 6.0	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 3.5	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 1.75	
Conversion time	tconv	ADTYP $=0$, 12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	3.375			$\mu \mathrm{s}$
		ADTYP $=0$, 10-bit resolution ${ }^{\text {Note } 1}$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	6.75			
		ADTYP $=0$, 8-bit resolution ${ }^{\text {Note } 2}$	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	13.5			
		ADTYP = 1, 8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	2.5625			
			$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	5.125			
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	10.25			
Zero-scale error ${ }^{\text {Notes 3,4 }}$	EZS	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 4.0	\%FSR
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 2.5	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 1.25	
Full-scale error ${ }^{\text {Notes } 3,4}$	EFS	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			± 4.0	\%FSR
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 2.5	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 1.25	
Integral linearity error ${ }^{\text {Note } 3}$	ILE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			T.B.D.	
Differential linearity error ${ }^{\text {Note 3 }}$	DLE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			T.B.D.	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	
Reference voltage (+)	$A V_{\text {REF (}+ \text {) }}$	$=A V_{\text {refp }}$	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	2.4		AVDD	V
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1.8		AVDD	
			$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	1.6		AVDD	
Reference voltage (-)	AVREF(-)	= AV Refm		-0.5		0.3	V
Analog input voltage	Vain			0		AV REFPP	V
	Vbgr	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$		1.38	1.45	1.5	V
Consumption current	IAdC	$\mathrm{AV} \mathrm{DD}=3.6 \mathrm{~V}$			460	1090	$\mu \mathrm{A}$
Vref current	IavRef	AVREFP $=3.6 \mathrm{~V}$			14	25	$\mu \mathrm{A}$

Notes 1. Cannot be used for lower 2 bit of ADCR register
2. Cannot be used for lower 4 bit of ADCR register
3. Excludes quantization error $(\pm 1 / 2 \mathrm{LSB})$.
4. This value is indicated as a ratio (\%FSR) to the full-scale value.

Caution Always use AVdd pin with the same potential as the Vdd pin.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
 ANIO to ANI12 (supply ANI pin to AVdd)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, $1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{AVdD} \leq 3.6 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, $\mathrm{AVss}=0 \mathrm{~V}$, Reference voltage (+) $=$ AVrefp, Reference voltage (-) = $A V_{\text {refm }}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		12	bit
			$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		$10^{\text {Note } 1}$	
			$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	$8^{\text {Note } 2}$			
Overall error ${ }^{\text {Note } 3}$	AINL	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 9.0	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 5.0	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 2.5	
Conversion time	tconv	ADTYP $=0$, 12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	3.375			$\mu \mathrm{s}$
		ADTYP $=0$, 10-bit resolution ${ }^{\text {Note } 1}$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	6.75			
		ADTYP $=0$, 8 -bit resolution ${ }^{\text {Note } 2}$	$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	13.5			
		ADTYP = 1, 8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	2.5625			
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	5.125			
			$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	10.25			
Zero-scale error ${ }^{\text {Notes 3,4 }}$	EZS	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 7.0	\%FSR
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 3.75	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			± 2.0	
Full-scale error ${ }^{\text {Notes 3,4 }}$	EFS	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 7.0	\%FSR
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 3.75	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 2.0	
Integral linearity error ${ }^{\text {Note } 3}$	ILE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			T.B.D.	
Differential linearity error ${ }^{\text {Note } 3}$	DLE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			T.B.D.	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			T.B.D.	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			T.B.D.	
Reference voltage (+)	AV refp	= AVDD		1.6		3.6	V
Reference voltage (-)	AVrefm	= AVss		-0.5		0.3	V
Analog input voltage	$V_{\text {AIN }}$			0		AVrefp	V
	Vbgr	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$		1.38	1.45	1.5	V
Consumption current	Iadc	$\mathrm{AVDD}=3.6 \mathrm{~V}$			460	1090	$\mu \mathrm{A}$
Vref current	Iavref	AVREFP $=3.6 \mathrm{~V}$			14	25	$\mu \mathrm{A}$

Notes 1. Cannot be used for lower 2 bit of ADCR register
2. Cannot be used for lower 4 bit of ADCR register
3. Excludes quantization error ($\pm 1 / 2 \mathrm{LSB}$).
4. This value is indicated as a ratio (\%FSR) to the full-scale value.

Caution Always use AVdd pin with the same potential as the Vdd pin.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
(3) When $\operatorname{AVref~}_{(+)}=\operatorname{AV}$ refp/ANIO (ADREFP1 = 0 , $\operatorname{ADREFP0}=1$), $\operatorname{AVref~(~}-$) $=\operatorname{AVrefm/ANI1~(ADREFM~=1),~target~}$ ANI pin : ANI16 to ANI30 (supply ANI pin to EVdoo)
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{Ddo} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{AV} \mathrm{DD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EV}$ sso $=0 \mathrm{~V}$, AVss $=0 \mathrm{~V}$, Reference voltage (+) = AVrefp, Reference voltage (-) = AVrefm = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		12	bit
			$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		$10^{\text {Note } 1}$	
			$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	$8^{\text {Note } 2}$			
Overall error ${ }^{\text {Note } 3}$	AINL	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 9.0	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 5.0	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 2.5	
Conversion time	tconv	ADTYP $=0$, 12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	4.125			$\mu \mathrm{s}$
		ADTYP $=0$, 10-bit resolution ${ }^{\text {Note } 1}$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	9.5			
		ADTYP $=0$, 8-bit resolution ${ }^{\text {Note } 2}$	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	57.5			
		ADTYP = 1, 8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	3.3125			
			$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	7.875			
			$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	54.25			
Zero-scale error ${ }^{\text {Notes } 3,4}$	EZS	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 7.0	\%FSR
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 3.75	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 2.0	
Full-scale error ${ }^{\text {Notes } 3,4}$	EFS	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 7.0	\%FSR
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 3.75	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 2.0	
Integral linearity error ${ }^{\text {Note } 3}$	ILE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	
Differential linearity error ${ }^{\text {Note } 3}$	DLE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	
Reference voltage (+)	AVREF(+)	= AVRefp	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	2.4		AVDD	V
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	1.8		AVDD	
			$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	1.6		AVDD	
Reference voltage (-)	$A V_{\text {REF }}(-)$	$=$ AVrefm		-0.5		0.3	V
Analog input voltage	Vain			0		AV ${ }_{\text {refp }}$	V
	Vbgr	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1.38	1.45	1.5	V
Consumption current	Iadc	$\mathrm{AVDD}=3.6 \mathrm{~V}$			400	950	$\mu \mathrm{A}$
Vref current	Iavref	AVRefp $=3.6 \mathrm{~V}$			14	25	$\mu \mathrm{A}$

Notes 1. Cannot be used for lower 2 bit of ADCR register
2. Cannot be used for lower 4 bit of ADCR register
3. Excludes quantization error ($\pm 1 / 2$ LSB).
4. This value is indicated as a ratio (\%FSR) to the full-scale value.

Caution Always use AVdD pin with the same potential as the Vdd pin.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
 ANI16 to ANI30 (supply ANI pin to EVddo)
 voltage (+) = AVdd, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res		$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		12	bit
			$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	8		$10^{\text {Note } 1}$	
			$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$	$8^{\text {Note } 2}$			
Overall error ${ }^{\text {Note } 3}$	AINL	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 14.0	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 7.5	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$			± 3.75	
Conversion time	tconv	ADTYP = 0, 12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	4.125			$\mu \mathrm{s}$
		ADTYP $=0$, 10-bit resolution ${ }^{\text {Note } 1}$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	9.5			
		ADTYP $=0$, 8-bit resolution ${ }^{\text {Note } 2}$	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	57.5			
		ADTYP = 1, 8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	3.3125			$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$	7.875			
			$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$	54.25			
Zero-scale error ${ }^{\text {Notes 3,4 }}$	EZS	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 9.0	\%FSR
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 5.0	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			± 2.5	
Full-scale error ${ }^{\text {Notes 3,4 }}$	EFS	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			± 9.0	\%FSR
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			± 5.0	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			± 2.5	
Integral linearity error ${ }^{\text {Note } 3}$	ILE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			T.B.D.	
Differential linearity error ${ }^{\text {Note } 3}$	DLE	12-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			T.B.D.	LSB
		10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$			T.B.D.	
		8-bit resolution	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$			T.B.D.	
Reference voltage (+)	$A \mathrm{VREF}_{\text {(}+)}$	= AVDD		1.6		3.6	V
Reference voltage (-)	A $V_{\text {ref(-) }}$	= AVss		-0.5		0.3	V
Analog input voltage	$V_{\text {AIN }}$			0		AV ${ }_{\text {refp }}$	V
	Vbgr	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}$		1.38	1.45	1.5	V
Consumption current	Iadc	$\mathrm{AVDD}=3.6 \mathrm{~V}$			400	950	$\mu \mathrm{A}$
V ${ }_{\text {Ref }}$ current	Iavref	AVREFP $=3.6 \mathrm{~V}$			14	25	$\mu \mathrm{A}$

Notes 1. Cannot be used for lower 2 bit of ADCR register
2. Cannot be used for lower 4 bit of ADCR register
3. Excludes quantization error ($\pm 1 / 2$ LSB).
4. This value is indicated as a ratio (\%FSR) to the full-scale value.

Caution Always use AVdD pin with the same potential as the Vdd pin.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.
 (ADREFM = 0), target ANI pin : ANIO to ANI12, ANI16 to ANI30
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDD} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{AVDD} \leq 3.6 \mathrm{~V}$, V ss $=\mathrm{EV}$ Sso $=0 \mathrm{~V}$, AV Sso $=0 \mathrm{~V}$, Reference voltage (+) = Internal reference voltage, Reference voltage (-) = AVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res		8			bit
Conversion time	tconv	8-bit resolution	16			$\mu \mathrm{s}$
Zero-scale error ${ }^{\text {Notes } 1,2}$	EZS	8-bit resolution			± 2.5	\%FSR
Integral linearity error ${ }^{\text {Note } 1}$	ILE	8-bit resolution			T.B.D.	LSB
Differential linearity error ${ }^{\text {Note } 1}$	DLE	8-bit resolution			T.B.D.	LSB
Reference voltage (+)	$A V_{\text {REF (}+ \text {) }}$	= Internal reference voltage	1.38	1.45	1.5	V
Reference voltage (-)	$A V_{\text {Ref(}- \text {) }}$	$=\mathrm{AV}$ ss	-0.5		0.3	V
Analog input voltage	Vain		0		AVrefp	V
	Vbgr		Conversion prohibit			V
Consumption current	IAdC	AVDD $=3.6 \mathrm{~V}$		400	950	$\mu \mathrm{A}$
Vref current	Iavref			75		$\mu \mathrm{A}$

Notes 1. Excludes quantization error ($\pm 1 / 2$ LSB).
2. This value is indicated as a ratio (\%FSR) to the full-scale value.

Caution Always use AVdD pin with the same potential as the Vdd pin.

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

2.6.2 Temperature sensor characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVdDo} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	$\mathrm{V}_{\text {TMPS25 }}$	Setting ADS register $=80 \mathrm{H}, \mathrm{TA}=+25^{\circ} \mathrm{C}$		1.05		V
Reference output voltage	Vconst	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV / C
Operation stabilization wait time	tamp				2	$\mu \mathrm{~s}$

2.6.3 POR circuit characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}$ ss $\left.=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.48	1.51	1.54	V
	VPDR	Power supply fall time	1.47	1.50	1.53	V
Minimum pulse width	TPW		300			$\mu \mathrm{~s}$
Detection delay time					350	$\mu \mathrm{~s}$

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode
($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{PDR}} \leq \mathrm{EV} \mathrm{DDO} \leq \mathrm{V}_{\mathrm{DD}} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{EV}$ Ss $0=0 \mathrm{~V}$)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLvD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		V LvD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		V LvD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		V LVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLvD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pulse width		tıw		300			$\mu \mathrm{s}$
Detection delay time						300	$\mu \mathrm{s}$

Remark $\operatorname{VLVD(n-1)}>\operatorname{VLVDn:~} \mathrm{n}=3$ to 13

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

LVD Detection Voltage of Interrupt \& Reset Mode

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	VLvD13	VPOC0, VPOC1, $\mathrm{V}_{\text {POC2 }}=0,0,0$, falling reset voltage: 1.6 V		1.60	1.63	1.66	V
	VLvD12	$\begin{aligned} & \text { LVIS0, LVIS1 }=1,0 \\ & (+0.1 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	1.74	1.77	1.81	V
			Falling interrupt voltage	1.70	1.73	1.77	V
	VLVD11	$\begin{aligned} & \text { LVISO, LVIS1 = 0, } 1 \\ & (+0.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	1.84	1.88	1.91	V
			Falling interrupt voltage	1.80	1.84	1.87	V
	VLVD4	$\begin{aligned} & \text { LVISO, LVIS1 = 0, } 0 \\ & (+1.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLvD11	$V_{\text {POCO }}, \mathrm{V}_{\text {POC1 }}, \mathrm{V}_{\text {POC2 }}=0,0,1$, falling reset voltage: 1.8 V		1.80	1.84	1.87	V
	VLvD10	$\begin{aligned} & \text { LVIS0, LVIS1 = 1, } 0 \\ & (+0.1 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	VLvd9	$\begin{aligned} & \text { LVISO, LVIS1 = 0, } 1 \\ & (+0.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	VLvD2	$\begin{aligned} & \text { LVIS0, LVIS1 = 0, } 0 \\ & (+1.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	VLvD8	$V^{\text {POCO, }}$, $\mathrm{V}_{\text {POC1 }}$, $\mathrm{V}_{\text {POC2 }}=0,1,0$, falling reset voltage: 2.4 V		2.40	2.45	2.50	V
	VLvD7	$\begin{aligned} & \text { LVISO, LVIS1 }=1,0 \\ & (+0.1 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	Vıvo6	$\begin{aligned} & \text { LVISO, LVIS1 = 0, } 1 \\ & (+0.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	VLvD5	VPOC0, $\mathrm{V}_{\text {POC1 }}$, $\mathrm{V}_{\text {POC2 }}=0,1,1$, falling reset voltage: 2.7 V		2.70	2.75	2.81	V
	VLVD4	$\begin{aligned} & \text { LVISO, LVIS1 = 1, } 0 \\ & (+0.1 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLvD3	$\begin{aligned} & \text { LVISO, LVIS1 = 0, } 1 \\ & (+0.2 \mathrm{~V}) \end{aligned}$	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V

Caution The pins mounted depend on the product. Refer to 1.3.1 25 -pin products to 1.3 .4 64-pin products.

Supply Voltage Rise Time ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}$, V ss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum time to rise to $1.6 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD}}(\mathrm{MIN} .)\right)^{\text {Note }}$ $\left(\mathrm{VDD}_{\mathrm{DD}} 0 \mathrm{~V} \rightarrow 1.6 \mathrm{~V}\right)$	trup1	When $\overline{\mathrm{RESET}}$ input is not used			3.2	ms

Note Make sure to raise the power supply in a shorter time than this.

Supply Voltage Rise Time Timing

- When RESET pin input is not used

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		$1.47^{\text {Note }}$		3.6	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

2.8 Flash Memory Programming Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDD}} \leq \mathrm{VDD} \leq 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{EV} \mathrm{Vs}_{\mathrm{S}}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 3.6 \mathrm{~V}$		1		32	MHz
Number of code flash rewrites	Cerwr	1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.	Retained for 20 years (Self/serial programming) ${ }^{\text {Note }}$	1,000			Times
Number of data flash rewrites			Retained for 1 years (Self/serial programming) ${ }^{\text {Note }}$		1,000,000		
			Retained for 5 years (Self/serial programming) ${ }^{\text {Note }}$	100,000			

Note When using flash memory programmer and Renesas Electronics self programming library

Remark When updating data multiple times, use the flash memory as one for updating data.

Caution The pins mounted depend on the product. Refer to 1.3.1 25-pin products to 1.3.4 64-pin products.

2.9 Timing Specs for Switching Modes

($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV}$ dDo $\leq \mathrm{V} \mathrm{DD} \leq 3.6 \mathrm{~V}, \mathrm{Vss}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
How long from when a pin reset ends until the initial communication settings are specified	tsuInit	POR and LVD reset must end before the pin reset ends.			100
How long from when the TOOL0 pin is placed at the low level until a pin reset ends	tsu	POR and LVD reset must end before the pin reset ends.	10		
How long the TOOLO pin must be kept at the low level after a reset ends	tHD	POR and LVD reset must end before the pin reset ends.	1		

$<1>$ The low level is input to the TOOLO pin.
$<2>$ The pins reset ends (POR and LVD reset must end before the pin reset ends.).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external and internal resets end.
tsu: How long from when the TOOLO pin is placed at the low level until a pin reset ends
tнг: How long to keep the TOOLO pin at the low level from when the external and internal resets end

3. PACKAGE DRAWINGS

3.1 25-pin products

R5F10E8AALA, R5F10E8CALA, R5F10E8DALA, R5F10E8EALA

25-PIN PLASTIC FLGA (3x3)

DETAIL OF © PART
DETAIL OF (D) PART

	(UNIT:mm)
ITEM	DIMENSIONS
D	3.00 ± 0.10
E	3.00 ± 0.10
w	0.20
e	0.50
A	0.69 ± 0.07
b	0.24 ± 0.05
x	0.05
y	0.08
$y 1$	0.20
$z D$	0.50
$z E$	0.50
	P25FC-50-2N2-1

© 2010 Renesas Electronics Corporation. All rights reserved.

3.2 32-pin products

R5F10EBAANA, R5F10EBCANA, R5F10EBDANA, R5F10EBEANA

32-PIN PLASTIC WQFN(5x5)

DETAIL OF (A) PART

EXPOSED DIE PAD

	(UNIT:mm)
ITEM	DIMENSIONS
D	5.00 ± 0.05
E	5.00 ± 0.05
A	0.75 ± 0.05
b	$0.25_{-0.07}^{+0.05}$
e	0.50
Lp	0.40 ± 0.10
x	0.05
y	0.05
	P32K8-50-3B4-2

ITEM		D2		E2	
			MIN	NOM	MAX

3.3 48-pin products

R5F10EGAAFB, R5F10EGCAFB, R5F10EGDAFB, R5F10EGEAFB

48-PIN PLASTIC LQFP (FINE PITCH)(7x7)

R5F10EGAANA, R5F10EGCANA, R5F10EGDANA, R5F10EGEANA

48-PIN PLASTIC WQFN(7x7)

DETAIL OF (A) PART

ITEM		D2		E2		
	MIN		NOM	MAX	MIN	NOM
EXPOSAX						
DIE PAD VARIATIONS	A	5.45	5.50	5.55	5.45	5.50

3.4 64-pin products

R5F10ELCAFB, R5F10ELDAFB, R5F10ELEAFB

64-PIN PLASTIC LQFP(FINE PITCH)(10x10)

64-PIN PLASTIC FBGA (4x4)

	(UNIT:mm)
ITEM	DIMENSIONS
D	4.00 ± 0.10
E	4.00 ± 0.10
w	0.15
A	0.89 ± 0.10
A1	0.20 ± 0.05
A2	0.69
e	0.40
b	0.25 ± 0.05
x	0.05
y	0.08
y 1	0.20
ZD	0.60
ZE	0.60
	P64F1-40-AA2-1

© 2011 Renesas Electronics Corporation. All rights reserved.

		Description	
Rev.	Date	Page	Summary
0.01	Dec 26, 2011	-	First Edition issued

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

[^0]
NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

4. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
5. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
6. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
7. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
8. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
9. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
10. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
11. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
12. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer sofftware alone is very difificult, please evaluate the safety of the final products or system manufactured by you.
13. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
14. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
15. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries, (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

SALES OFFICES
Renesas Electronics Corporation
Refer to "http://www.renesas.com/" for the latest and detailed information.

```
Renesas Electronics America Inc.
280 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-21-65030, rax. +49-211-6503-1
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Renesas Electronics (Shanghai) Co, Ltd
M,
Renesas Electronics Hong Kong Limited
M,
Renesas Electronics Taiwan Co., Ltd.
TF, No. +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Renesas Electronics Malaysia Sdn Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Renesas Electronics Korea Co., Ltd.
M1F.,Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
```


[^0]: Caution: This product uses SuperFlash ${ }^{\circledR}$ technology licensed from Silicon Storage Technology, Inc.

